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Abstract 

The unsteady flow in porous medium of a viscous incompressible fluid bounded by two parallel porous plates is studied 
with heat transfer. A uniform and constant pressure gradient is applied in the axial direction whereas a uniform suction and 
injection are applied in the direction normal to the plates. The two plates are kept at constant and different temperatures and 
the viscous dissipation is not ignored in the energy equation. The effect of the porosity of the medium and the uniform suction 
and injection velocity on both the velocity and temperature distributions are investigated. 

Keywords: Unsteady flow, Viscous incompressible fluid, Heat transfer, Porous medium, Numerical solution. 

1. Introduction 

The flow of a viscous electrically conducting fluid 
between two parallel plates has important applications as 
in magnetohydrodynamic (MHD) power generators, MHD 
pumps, accelerators, aerodynamics heating, electrostatic 
precipitation, polymer technology, petroleum industry, 
purification of molten metals from non-metallic inclusions 
and fluid droplets-sprays [1]. The flow between parallel 
plates of a Newtonian fluid with heat transfer has been 
examined by many researchers in the hydrodynamic case 
considering constant physical properties [2-6]. The 
extension of the problem to the MHD case has attracted 
the attention of many authors [7-12]. 

In this paper, the transient flow with heat transfer 
through a porous medium of an incompressible viscous 
fluid between two infinite horizontal porous plates is 
investigated. A constant pressure gradient is applied in the 
axial direction and a uniform suction and injection is 
imposed in the direction normal to the plates. The flow 
through a porous medium deals with the analysis in which 
the differential equation governing the fluid motion is 
based on the Darcy’s law which accounts for the drag 
exerted by the porous medium [13-15]. 
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The two plates are maintained at two different but 
constant temperatures. 

This configuration is a good approximation of some 
practical situations such as heat exchangers, flow meters, 
and pipes that connect system components. The cooling of 
these devices can be achieved by utilizing a porous surface 
through which a coolant, either a liquid or gas, is forced. 
Therefore, the results obtained here are important for the 
design of the wall and the cooling arrangements of these 
devices.The linear partial differential equations of motion 
are solved analytically using the method of Laplace 
transform to obtain the velocity distribution as a function 
of space and time. The inhomogeneous energy equation is 
solved numerically considering the viscous dissipation 
using the method of finite differences and by applying the 
Crank-Nicolson implicit method. The effect of the porosity 
of the medium and the suction and injection velocity on 
both the velocity and temperature distributions are 
reported. The transient solutions proved that the steady 
state solution is approached as the asymptotic development 
of a time-dependent process and presented some 
interesting results. 

2. Description of the Problem 

The two parallel horizontal plates are located at the y=±h 
planes and extend from x=-∞ to ∞ and z=-∞ to ∞ as shown in 
Fig. 1 . The lower and upper plates are kept at the two constant 
temperatures T1 and T2, respectively, where T2>T1. The fluid 
flows between the two plates in a porous medium where the 
Darcy's model is assumed [13-15]. The motion is driven by a 
constant pressure gradient dp/dx in the x-direction, and a 
uniform suction from above and injection from below which 
are applied at t=0 with velocity ov .Due to the infinite 
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dimensions in the x and z-directions all quantities apart from 
the pressure gradient dp/dx which is assumed constant, are 

independent of the x and z-coordinates. The velocity vector of 
the fluid is given as 

 

 
Fig. 1 The geometry of the problem 
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with the initial and boundary conditions u=0 at t≤0, and 

u=0 at y=±h for t>0. The temperature T(y,t) at any point in 
the fluid satisfies both the initial and boundary conditions 
T=T1 at t≤0, T=T2 at y=+h, and T=T1 at y=-h for t>0. The 
fluid flow is governed by the momentum equation [16] 
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where   and   are, respectively, the density and the 

coefficient of viscosity and K  is the Darcy permeability 
[13-15]. To find the temperature distribution inside the 
fluid we use the energy equation [17] 
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where c and k are, respectively, the specific heat 

capacity and the thermal conductivity of the fluid. The 
second term on the right side represents the viscous 
dissipation. 

Introducing the following non-dimensional quantities 
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,/  hvS o  is the suction parameter, 

kc /Pr   is the Prandtl number, 

)(/ 12
222 TTchEc    is the Eckert number, 

KhM /2  is the porosity parameter, 

NuL = (∂ T̂ /∂ ŷ ) ŷ =-1 is the Nusselt number at the 

lower plate, 

NuU = (∂ T̂ /∂ ŷ ) ŷ =1 is the Nusselt number at the 

upper plate, 
Equations (1)-(2) are written as (the "hats" will be 

dropped for convenience) 
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The initial and boundary conditions for the velocity 

become 
 

0,1,0,0,0  tyutu  (5) 
 
and the initial and boundary conditions for the 

temperature are given by 
 

.1,0,1,1:0,0:0  yTyTtTt  (6) 

3. Analytical Solution of the Equations of Motion 

Equation (3) is a linear inhomogeneous partial 
differential equation which is solved analytically using the 
Laplace transform (LT) method, under the initial and 
boundary conditions given by Eq. (5) to give the velocity 
field as functions of space and time. Taking the LT of Eq. 
(3) yields 
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where U(y,s)=L(u(y,t)), C is the constant value of –

dP/dx and sMsK )( . The solution of Eq. (7) with y as 
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an independent variable is given as 
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where KS  4/22 . Using the complex inversion 
formula and the residue theorem [16], the inverse 
transform of U(y,s) is determined as 
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where, 
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Equation (8) shows that u is directly proportional to the 

pressure gradient, that is u/C is independent of C. The 
expression for the velocity u is to be evaluated for various 
values of the parameters M and S. 

4. Numerical Solution of the Energy Equation 

The analytical solution of Eq. (8) determines the 
velocity field for various values of the parameters M and 
S. The values of the velocity, when substituted in the right-
side of the inhomogeneous energy equation (4), make it 
too difficult to solve analytically. Therefore, the energy 
equation is to be solved numerically using the Crank-
Nicolson implicit method [18] with the initial and 
boundary conditions given by Eq. (6). The finite difference 
equations are written at the mid-point of the computational 
cell and the different terms are replaced by their second-
order central difference approximations in the y-direction. 
The diffusion term is replaced by the average of the central 
differences at two successive time levels. The viscous 
dissipation term is evaluated using the velocity 
components and their derivatives in the y-direction which 
are obtained from the exact solution. We introduce the 
variables   yuv  /  and   yTH  / to reduce Eq. (4) 

from the second order to the first order. The computational 
domain is divided into meshes each of dimension t and 
y in time and space, respectively. The finite difference 
representation for the energy equation is given by 
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Finally, the block tri-diagonal system is solved using 
Thomas' algorithm [18]. Equation (9) is rewritten in the 
following forms 

 

54321 bHbHbTbTb klkl   (10) 
 
Where bm (where m =1,2 , …,5) are the coefficients of 

the difference equations (10) that is corresponding to Eq. 
(9), l and k are countries equations to (i, j+1) and (i+1, 
j+1), respectively. The position y=-1 is designated by l=1. 
We write the generalized Thomas-algorithm as in the 
following steps [18]. 

The unknowns are written as 
 

llll THTT ˆ  (11) 

kkkl HHHH ˆ  (12) 

 

where, the variables lT , lT̂ , kH  and kĤ  are 

representing Thomas' coefficients. The equations relating 
the temperature T to its derivatives H are given by 
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Substituting from Eqs. (11) and (12) into (13) and after 

manipulations we get, 
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From which we can get 
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Substituting from Eqs. (13) and (15) into Eq. (10) we 

can obtain the two coefficients kH  and kĤ . 

Unlike the velocity u, the temperature distribution 
depends on C. All calculations are carried out for Pr=1 and 
Ec=0.2. 

5. Results and Discussion 

Fig. 2 shows the time progression of the velocity and 
temperature profiles up till the steady state and for M=1 
and S=1. It is clear from Fig. 2a that the velocity charts are 
asymmetric about the y=0 plane because of the suction. 
The velocity component u reaches the steady state faster 
than T which is expected as u acts as the source of 
temperature. 
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(a) 

 
(b) 

Fig. 2 Time development of the profile of: (a) u; and (b) T (M=1 
and S=1) 

 
Fig. 3 indicates the effect of the porosity parameter M 

on the time progression of the velocity u and temperature 
T at the centre of the channel and for S=0. It is clear from 
Fig. 3a that increasing the parameter M decreases u and its 
steady state time as a result of increasing the resistive 
porosity force on u. Fig. 3b shows that increasing M 
decreases T and its steady state time as increasing M 
decreases u which, in turn, decreases the viscous 
dissipation which decreases T. 

 

 
(a) 

 
(b) 

Fig. 3 Effect of M on the time variation of: (a) u at y=0; (b) T at 
y=0. (S=0) 

Fig. 4 indicates the effect of the suction parameter on 
the time progression of the velocity u and temperature T at 
the centre of the channel for M=0. In Fig. 4a, it is observed 
that increasing the suction decreases the velocity u at the 
center and its steady state time due to the convection of 
fluid from regions in the lower half to the center, which 
has higher fluid speed. In Fig. 4b, the temperature at the 
center is influenced more by the convection term, which 
pushes the fluid from the cold lower half towards the 
centre. 

 

 
(a) 

 

 
(b) 

Fig. 4 Effect of S on the time variation of: (a) u at y=0; (b) 
T at y=0. (M=0) 

 
Table 1 presents the variation of the steady state 

Nusselt number at the upper plate ܰݑ௎ and the lower plate 
௅ for various values of C and for Prݑܰ ൌ 1 , Ec ൌ 0.2. It is 
clear that increasing the magnitude of the pressure gradient 
C decreases ܰݑ௅ while increases ܰݑ௎. Table 2 presents 
the variation of the steady state Nusselt number at the 
upper plate  ܰݑ௎ and the lower plate ܰݑ௅ for various 
values of Pr and for C ൌ െ5 , Ec ൌ 0.2. It is shown that 
increasing Pr decreases ܰݑ௅ and increases the magnitude 
of ܰݑ௎. Table 3 presents the variation of the steady state 
Nusselt number at the upper plate UNu  and the lower 

plate ܰݑ௅for various values of Ec and for C ൌ െ5 , Pr ൌ 1. 
It is shown that increasing Ec increases ܰݑ௅ while 
decreases ܰݑ௎. 
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Table 1 Variation of the steady state Nusselt number at the upper 
plate UNu  and the lower plate LNu  for various values of ܥ 

ݎܲ) ൌ 1 , ܿܧ ൌ 0.2ሻ 

 ௎ݑܰ ௅ݑܰ ܥ

-7 1.132888 -1.165262 
-6 .8729877 -.5502089 
-5 .6541663 -.02857843 
-4 .4755399 .3986019 
-3 .3353945 .7296044 
-2 .2360443 .9668145 
-1 .1761703 1.108868 
0 .1561837 1.156197 

 
Table 2 Variation of the steady state Nusselt number at the upper 

plate UNu  and the lower plate LNu  for various values of Pr 

ܥ) ൌ െ5 , ܿܧ ൌ 0.2ሻ 

 ௎ݑܰ ௅ݑܰ ݎܲ

1 .6541663 -.02857843 
2 .8162214 -.5451652 
3 .9549121 -1.079961 
4 1.060888 -1.6484 
5 1.138879 -2.247568 
6 1.196886 -2.86929 

10 1.327164 -5.471375 
 

Table 3 Variation of the steady state Nusselt number at the 
upper plate UNu  and the lower plate LNu  for various 

values of ܿܧሺܥ ൌ െ5 , ݎܲ ൌ 1ሻ 
 ௎ݑܰ ௅ݑܰ ܿܧ

0 .1561835 1.156197 
.1 .4052173 .5638403 
.2 .6541663 -.02857843 
.3 .90319 -.6209352 
.4 1.152168 -1.213346 
.5 1.401205 -1.805681 
.6 1.650315 -2.397952 
.7 1.899258 -2.990373 
1 2.646212 -4.767562 

6. Conclusions 

The unsteady flow through a porous medium between 
parallel plates of a viscous incompressible fluid has been 
studied in the presence of uniform suction and injection. 
The effect of the porosity and the suction and injection 
velocity on the velocity and temperature distributions is 
investigated. It is found that both the porosity and suction 
or injection velocity has a marked effect on decreasing 
both the velocity and temperature distributions. 
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